Guoying Chen
Curriculum Vitae
guoying_chen_cv.pdfAwards
2022 R&D 100 Award: Stable and High-Performing Single-Crystal LiNixMnyCo1-x-yO2 Cathode Materials (SC-NMC) - August 22nd 2022
Next-generation lithium-ion batteries need to have higher energy density and power density at a lower cost, with better safety and longer lifespans. Berkeley Lab scientists have developed a method of producing Single-Crystal NMC Cathode Materials (SC-NMC) that eliminates the fracturing and reduces the side reactions on the particle surface. Cathodes using the resulting product remain mechanically intact. The method’s processes can be adopted into existing production lines, and SC-NMCs made with this method deliver significantly improved performance and stability compared to commercial polycrystalline materials.
2020 R&D 100 Award: Solid Lithium Battery - October 5th 2020
Solid Lithium Battery (SLiB) Using Hard and Soft Solid Electrolytes
The lithium battery market is expected to grow from more than $37 billion in 2019 to more than $94 billion by 2025. However, the liquid electrolytes used in most commercial lithium-ion batteries are flammable and limit the ability to achieve higher energy densities. Safety issues continue to plague the electronics markets, as often-reported lithium battery fires and explosions result in casualties and financial losses.
In Berkeley Lab’s solid lithium battery, the organic electrolytic solution is replaced by two solid electrolytes, one soft and one hard, and lithium metal is used in place of the graphite anode. In addition to eliminating battery fires, incorporation of a lithium metal anode with a capacity 10 times higher than graphite (the conventional anode material in lithium-ion batteries) provides much higher energy densities.
The technology was developed by Berkeley Lab scientists Marca Doeff, Guoying Chen, and Eongyu Yi, along with collaborators at Montana State University.